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I. INTRODUCTION

For any nonnegative integer m, let JIm denote the collection of all real
polynomials of degree at most m. For given r > 0 and s> 1, let E(r, s)
denote the unique ellipse in the complex plane with foci at x = 0 and x = r
and semi-major and semi-minor axes a and b, respectively, such that
b/a = (S2 - I)/(s2 + 1). Ifj(z) is any entire function, set

Mk, s) = max{lj(z)l: z EO E(r, s)}.

In a recent paper [2], a Bernstein type of theory has been developed for
the problem of approximating real valued functions on the half line [0, (0).
Precisely, the following two results were proved.

THEOREM 1. Let j(x) be a real continuous function (¥CO) on [0, (0), and
assume that there exist a sequence ofreal polynomials {Pn(x)}~=o , with Pn EO JIn
for each n :> 0, and a real number q > I such that

lliii 111-1- __I_II/lin <! < 1
n->OO f(x) Pn(x) Loo[O,oo) I "" q .

Then, there exists an entire function F(z) with F(x) = f(x) for all x :> 0, and
F is of finite order p. In addition, for every s > 1, there exist constants
K = K(s, q) > 0, () = ()(s, q) > 0 and ro = ro(s, q) > 0 such that

Mp(r, s) ~ K(llfIILoo[o,rl for all r:> ro. (2)
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Also included in the theorem is a best possible upper estimate for p. It
should also be noted that (I) implies that either f is identically a constant
or lim",..", If(x) I = 00.

THEOREM 2. Let fez) = L:~o anzn be an entire function with nonnegative
coefficients and ao > 0. If there exist real numbers s > 1, A > 0, f) > °and
ro > °such that Mf(r, s) ~ A(llfllL'XJ[0.rJ)8 for all r ;? ro then there exists a
sequence of real polynomials {Pn(x)}:~o with Pn E IInfor n ;? °such that

Iiiii ll\ _1_ - _1_11 ll/n ~ r[lf(l+8)] < 1.
n->'" f(x) Pn(x) L""[O.",)

Thus, Theorem 1 states that geometric convergence on the half line of the
reciprocals of polynomials to the reciprocal of a real continuous function
implies that the function is the restriction of an entire function satisfying a
growth condition (2) on certain ellipses. Furthermore, this growth condition
implies that F is an entire function of finite order.

In the converse direction, if F is an entire function satisfying this growth
condition and having nonnegative Taylor coefficients then there exists a
sequence of real polynomials whose reciprocals converge geometrically to
the reciprocal of F on the half line.

It is this additional assumption of nonnegative Taylor coefficients that
motivated the work of this paper. This condition is not necessary for the
conclusion of Theorem 2. For example, the function F(z) = eZ + 2e-z

satisfies the other two hypotheses of Theorem 2 and the conclusion of
Theorem 2 is valid for this function.

In this paper we shall present a new sufficient condition for geometric
convergence to occur. It is our conjecture that Theorem 2 is true if one
replaces the requirement on the Taylor coefficients of F with the assumption
that F is either identically a constant or lim",..", IF(x) [ = +00. However,
we have not succeeded in proving this and we would be pleased if an answer
to this question could be found.

In the remainder of this paper we shall say that an entire function f has
geometric convergence whenever there exist a sequence of polynomials
{Pn(x)}:~o ,Pn E IIn for n ;? 0, and a real number q > 1, for which (1) holds.
Also, we shall write II . II[o.d and II . 11[0.",,) for II' IIL""[o.r] and II . Ib,[o.",) ,
respectively.

II. MAIN RESULT

In this section we wish to prove a new theorem for geometric convergence
to occur. This result will be a comparison type theorem. That is, we shall
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show that if f does not differ too much from a function known to have
geometric convergence then f has geometric convergence. The proof that
we shall give is self-contained; however, many of results that we shall use
are special cases of some recent work by J. A. Roulier [3] and [4] on w
approximation. This work studies the problem of approximating continuous
function on [a, b] with polynomials in JIm with respect to a weight function
of the form

(
n )-1

w(x) = nI x - Xi I~i ,
t=l

where a ~ Xl < X2 < ... < X n ~ b and !Xi is a nonnegative real number for
each i = 1,..., n. Since the functions that we are approximating are always
entire functions and the powers !Xi are always integers here, we decided to
simply develop the specific facts of w-approximation that we need within
the proof without explicit reference to this more general study. We refer
the reader to the papers referenced above for the details of w-approximation.

THEOREM 3. Let f be an entire function having nonnegative zeros at
precisely {Xi}~=l' 0 ~ Xl < X2 < '" < Xk, with respective orders 131,"" 13k

and assume there exist real numbers K > 0, so> 1, () > 0 and ro > 0 such that

for all r ~ r0 • (3)

Further, assume there exist entire functions hand g such that

(i) fez) = h(z) + g(z) for all z E C,

(ii) h(z) = 'L:=o anzn with an ~ Ofor n = 0,1,... , where h is not a poly
nomial and h has geometric convergence,

(iii) there exists B > 0 such that g(x) ~ -Bfor all X ~ 0,

(iv) there exist r1 > 0, ifi > 0 and A > 0, such that g(x) ~ Ah'iJ(x) for
all X ~ r1 ,

(v) there exists a sequence of positive integers {nj}J:o for which
o~ nj+l - nj ~ p, p a fixed positive integer and

for all X ~ 0, i = 0, 1,.... (4)

Then there exist a sequence ofreal polynomials {sn(x)}~_o with Sn E llnfor each
n ~ 0 such that
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Proof. Set

m = 131 + ... + 13k ,
k

w(x) = IT (x - xl'
i=l

and select jo ~ 0 such that n; ~ 3m. Let Pam(X) and qam(x) be the Hermiteo
interpolating polynomials from IIsm to hex) and g(x), respectively, at the
points Xl'"'' Xk with respective orders 3131 ,..., 3f3k . Define h1 and gl by

h (z) = h(z) - Psm(z)
1 Wa(Z)

and
g (Z) _ g(Z) - qam(Z)

1 - WS(Z) .

Note that both h1 and gl are entire functions. Select ra ~ r2 such that
IZ - Xi I ~ 1 for i = 1,..., k and Z on the boundary of E(ra, so) and

for x ~ ra, where Pam(x) = 1:::'0 b;xi and qam(x) = 1::0 c;xi • Thus, for
r ~ ra,

and

Ji1 (r s) = max Ih(z) - Psm(z) I
lit '0 zEoE(r ,so) wa(z)

~ max (I h(z)I + I Ihi II Z Ii)
zEoE(r ,so) ;~O

~ 2JiiIh(r, so) (5)

(6)

For each r ~ ra and j ~ jo, let Pn -3m(x, r) be the best uniform approxima-
• j

bon to h1 from IInj- am on [0, r],

It is well known that Pnj-am is the Lagrange interpolating polynomial to h1

on a certain set of points 0 < Y1 < ... < Yn am+1 < r. Set Pn*(x, r) =r ,
Pnram(x, r) wa(x) +Pam(x). Then, it is easily seen that P:, is the Hermite



212 ROULIER AND TAYLOR

interpolating polynomial to h on a certain set of points in [0, r] including
the set Xl"'" Xk with respective orders (at least) 3[:31 ,..., 3[:3k and

(8)

Similarly, let qn_-3m E JIn__3m be the best uniform approximation to gl on
1 1

[0, r] with error E~;-3m(gl) and set q:.cx, r) = qn_-3m(X, r) w3(x) + q3m(X).
Then, q:;(x, r) is the Hermite interpolating polyno~ial for g from JInj on a
certain set of nodes in [0, r] and

(9)

Select'4 ?o r3 such that h(r4) ?o max(2, 2B) and w(x) ~ hex) for all X ? '4
which is possible since h is not a polynomial. Write fez) = fez) w(z) where /
is entire. Since g(x) ?o -B for X ?o 0, we have thatf(x) ? M(x) for x ?o r4 •

This, in turn, implies that/ex) ?o !-[h(x)(w(x)] for X ?o r4 • Thus, there exists
S > Osuch that/ex) ? S for all x ? 0. Now, fix r ? r4 and set s:(x, r) =

;

p:;(x, r) + q:;(x,,) + E~;W3(X), where E~; = E~;_3m(hl) + E~r3m(gl)' As
noted earlier, p:(x, r) and q:(x, r) are Hermite interpolating polynomials

; ;

to hand g, respectively, on certain sets of nodes in [0, r]. Thus, p:j(x, r)
has all nonnegative coefficients since h(j)(x) ?o 0 for j = 0, 1,... and x ? 0.
Also, the standard remainder formula for Hermite interpolation implies
that g:(x, r) ?o g(x) for x? r since g(n;+ll(x) ~ °for x ?o 0. Combining

;

these facts and estimate (8), we have for x ? rand j ? jo ,

? her) + g(x)

? th(r)

and

1

_1__ 1 I ~_1_+ 1 ~ 4
f(x) s:;(x, r) '-'" If(x)! I silex, r)1 '-'" her) .

Since g(x) ~ Aht/J(x) for x? r, we have that

(10)

for r > r4 andj > jo, where y = {max(l, !/J)}-l and K1 = 4(A + 1).
Due to the special form of p:.(x, r) and q:.cx, r) we may write s:;(x, r) =, ,
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Sn_m(x, r) w(x), where sn._m(x, r) = Qn.-m(x, r) + E~ w2(x). Now, for
1 j ' t°~ X ~ rand j ~ jo ,

implying

and

(11)

where

Using a result due to S. N. Bernstein [1, p. 91], we may estimate E~ by
;

since hI and gi are both entire functions. Using (5) and (6), we get

since r ~ r 3 (13)

where K3 = 2 s't;"/(so - 1). Since h has geometric convergence there exist
by Theorem 1 real numbers K' > 0, 8' > 0 and r' > ° such that
Mh(r, so) ~ K' II h 11[~.1'] for all r ~ r'. Without loss of generality we shall
assume r4 ~ r'. Combining this with (3), gives

E~; ~ ~: (4K'11 h Ilf~.1'] + Kll/llfo.rJ).
o

(14)

From the inequality f(x) ~ th(x) for all x ~ r4 and (i), we get that there
exists a positive constant K4 , such that 1I/IIro.1'] ~ K4 11 h Ilro.1'] for all r ~ r4 •

Hence, using this, (11), and (14)

(15)
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for';?:'4 ,j ;?:jo and 0 ~ x ~ r where

ep = max(O, 0') and

(16)

Now the fact that 1imr-.00/(r) = + ex> gives a positive integer jl -;;: jo such
that to eachj -;;: A there corresponds an rj ? '4 for which

11/lllo.Tjl = f(rj) = s~!!("+'V).

Consequently, if we set s:(x) = s: (x, 'j) for each j ? j1 we see from (10)
j i

and (15) that

11

_1 __1 II ::::::: K e
f(x) s:/x) [0.00) ~ Sf!

where S1 = S~/(Y+81 and Ke = max(Kl ,K6). Finally, using the sequence of
polynomials sn(x) where six) == s:/x) for nj ~ n < ni+l and j ? A, gives

rrm 11_1 __1_1/1/
n
~ 1..- < I

n-+oo f(x) sn(x) lo.oo) S1

since nj+1 - nj ~ p for allj. I
We would like to remark that this Theorem remains true if one drops

the requirement that h is not a polynomial. For in this case, it can be shown
that the remaining hypotheses imply that / is also a polynomial.

Using this theorem, it readily follows that/ex) = e'" + ce-'" has geometric
convergence for each real constant c. We feel that an approach in this direc
tion may prove that an entire function satisfying the growth condition and
tending to + ex> as x -+ ex> has geometric convergence. We had hoped to
apply Theorem 3 to such a function by carefully separating its Taylor series
into two parts. However, we have not succeeded and this remains open.
We also feel that the hypotheses (iii)-(v) may be successfully weakened
without affecting the truth of the theorem and this also is an open question.
For example, Theorem 2 implies that lex) = e<e + cos x has geometric
convergence. We conjecture that g(x) = e:J) + e4 cos x has geometric con
vergence. However, Theorem 3 is not readily applied here as the obvious
decomposition of g does not satisfy the hypotheses of Theorem 3.
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